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FINITE-TIME BLOW-UP OF THE HEAT FLOW
OF HARMONIC MAPS FROM SURFACES

KUNG-CHING CHANG, WEI-YUE DING & RUGANG YE

This note is concerned with the singular behaviour of solutions to the
heat equation of harmonic maps between Riemannian manifolds. Eells
and Sampson [5] showed that for C ! initial values the solutions exist
locally in time and asked whether they exist for all time or they may blow
up in finite time. Recently, Coron-Ghidaglia [3], Ding [4] and Chen-Ding
[2] constructed many examples of finite-time blow-up of the solutions in
the case where the domain manifold has dimension greater than two.

However, it has been widely believed that finite-time singularities would
not occur in dimension two. Such a belief is seemingly supported by a
number of phenomena special for dimension two. For example, it has
been noted that even if a given smooth map from a surface belongs to
a homotopy class containing no harmonic maps, the solution to the heat
equation with the given map as initial value may exist globally (see [1]
and [6]). Such a phenomenon is unknown in higher dimensions and may
be viewed as an indication that probably all solutions exist globally in
dimension two.

Another phenomenon, observed first by R. Hamilton, is as follows. Sup-
pose that for some point x, of the domain surface and #, > 0 one has

C
—> fort<t0,

e(t) = ||e(u(t, .))"CO(D‘,) < to
where u is a solution of the heat equation, e(u(z, -)) denotes the energy
density of u at ¢, and D is a small neighborhood of x,. Then, using
rescaling analysis (cf. [8]) it is not hard to show that (¢, x;) is a regular
point of the solution #. Roughly speaking, this implies that if a solution
blows up at some finite time ¢, then the velocity of the blow-up cannot
be very high. Indeed, by letting A(t) = 1/&(¢), the above inequality is
equivaient to
Aty = CHty— 1),
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and blow-up occurs at #, iff A(f) — 0 as ¢ — {;,. The above observa-
tion says that A(¢z) cannot go to O as fast as any linear function. This
phenomenon seems to be rather unique compared with several other geo-
metric heat equations such as the Ricci flow and the mean curvature flow.

Finally, philosophically one expects that the two-dimensional heat flow
of harmonic maps should have special behavior due to the conformal in-
variance of the harmonic map problem in dimension two. Helein [7]
proved very recently that any weakly harmonic maps from surfaces are
smooth. This also gives one some hope for establishing a similar regular-
ity result for the global weak solutions [8] to the heat equation of harmonic
maps from surfaces.

Nevertheless, it turns out that finite-time blow-ups do occur in dimen-
sion two, as will be shown by simple examples in the following. The
examples of finite-time blow-up which we will construct are for solutions
to the heat equation of harmonic maps from the unit disk D? into the unit
2-sphere S?. We will only consider solutions which are S 1-equivariant in
space variables, just as in [1]. We will also show that our proof can be
used to produce similar examples for maps from S? onto S? of degree
>3 (or <-3). ’

Let

D' ={x=(x,x,0eR |x' <1}, S"={xeR :|x'=1}.

Given u, € C 1(D2 , s? )}, we consider the initial-boundary value problem
for the heat equation of harmonic maps as follows.

%—? =Au + |Vu|2u,
(1) ‘ u(0, x) = uy(x),

u(t, ')|6D2 = u0|3D2.
It is well known that (1) admits a unique classical solution # that solves
the problem on {0, T) x D? , where T = T(u,) € (0, cc] is the maximal
existence time of u. If 7T < oo, we say that the solution u blows up
in finite time. In [1], it is shown that if the initial map has the following
symmetric form '

X

2) () = (7 sin o), cosho(IXI)) ,
where £, € Cl([O, 1) and 4,(0) = 0, then the solution u of (1) has the
form

u(t, x) = (% sink(z, |x|), cosh(t, |x|)) ,
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and the problem (1) reduces to the following problem for A(t, r):

8h 1 sinh cosh
-y rr + _'hT - _——_.2__ 2
Bt r r

(3) RO, 1) = ho(r),

h(t,0)=hy(0)=0, ht,1)=hy(1)=>.

In [1], the authors show that if [A)| < 7, then the solution 4 of (3)
exists for all ¢ > 0; consequently the solution » of (1) with initial map
given by (2) is a global solution. (See also [6].) In contrast to this result,
we prove here the following theorem. _

Theorem. Suppose that uy € C 1(D2 ) Sz) has the form (2) with hy(0) =
0 and |hy(1)| > . Then the solution u of (1) with the given initial map
u, blows up in finite time.

PrROOF. We may assume that h,(1) = b > &, for otherwise —/ is a
solution of the same equation satisfying the assumption. It is easy to show
that if 7}, is the maximal existence time for the solution # of (1), then it
is the maximal time such that

he C’(0, Ty) x [0, 1) N C*((0, Ty) x [0, 1]).

We need only to prove that such a solution / of (2) must blow up in finite
time, i.e. T, < oo. We will treat some special cases before proving the
theorem in its full generality.

(i) We first prove the theorem for a class of initial data /4, that satisfy
a certain condition to be specified below (see (13)). The proof in this
case is simple and for those who wish to see just one example of finite-
time blow-up it will suffice. To this end we need to construct a family of
subsolutions to the parabolic equation in (3) that blow up in finite time.
For each subsolution f in this family there exists some 7 = T(f) > 0
such that f ¢ Cz((O, T)x (0, 1N Cl([O, T) x [0, 1]) and satisfies
(4) 8f o ¢ +1f-ﬂ’l§°ﬁr, on [0, T) x (0, 1).

ot rr rer r .
We will denote the right-hand side of (4) by 7(f) for simplicity, and

consider the ordinary differential equation
sin ¢ cos ¢

1
(5) T(¢)E¢,,+7¢,——r7_=0,

which can be solved explicitly. Indeed, all the solutions of (5) satisfying
¢(0) =0 and ¢(r) >0 for r > O are given by

P27
(6) ¢(r, A) = arccos (12 R rz) , A>0.
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Notice that for r >0

limg(r, )=z, and lim (r, 2)=0.

Let a=1+¢, where ¢ € (0, 1). We introduce a family of new functions

) 12 _ r2a
0(r, A) = ¢(r*, A) = arccos (m) ,

and observe that they are solutions to the equation

2 .
7 0”_'_10’_(1 sthcosG:O.
r r
Set
0(r)=06(r, u),

where u > 0 will be chosen appropriately large so that 8 can be as small
as we want. For the present, we assume 6(r) to satisfy

1
(8) cos B(r) > T+s forr €0, 1]
Next, let A(f) be the function defined by the following ordinary differential
equation:
9) F=-61",  AN0)=4y,

where J, Ay > 0 are numbers to be determined. The subsolution f has
the form

ft, r)=¢(r, A()) + 6(r).
Solving (9) we get
A =[ag " — (1 —e)ae) /2.
Set
T =23 % /(1 —¢)s.
Then A(¢) is smooth on [0, T),and A(¢) -0 as t > T. Wewillcall T
the blow-up time of f since
2A(2) 2aur®
t,r)=¢ (r, A1)+ 0 (r)= + ,
SN = 0,07 M) +6,0) = s +

fr(t,0)=%t),

and hence
(10) tlin}fr(t, 0) = +cc.
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We claim that there exists d, = d,(e, u) > 0 such that the function f
satisfies (4) provided 6 < 4. Indeed, since f is of the form f = ¢ + 6
and ¢, 0 satisfy equations (5), (7) respectively, we have

o(f) = r_z[sin ¢ cos ¢ — sin(¢ + 0) cos(p + ) + (1 + 6)2 sin 8 cos 0]
=r[(1 + &) sin O cos O — cos(2¢ + 0)sin 0]

> r2[(1 + &) sin 6 — cos(2¢ + 0) sin 0]

gsin @

»
r2

=

where we have used (8). An easy computation yields that

a I+e
2ur > 2ur

sinf = .
[T TR
Thus,
W)z e,
where ¢, = 2ue/ (ﬂz + 1). On the other hand, we have
of 0 1,00 _ e =2r _ 28A°r
51 = 500 A0 =X O55 0, 40 = =0k s =

From the above two inequalities we see that (4) is true if
202°r -
PLE <er 1

r

Introducing the new variable s = r/4 € (0, o), it is easy to see that (11)
is equivalent to

(11)

, VA>0andre(0,1).

2—¢
gls) = —— <&, /28, Vs>0.
1+s

It is clear that the function g(s) has a maximum M (&) depending only on
. Thus if 6 < ¢ /2M(e), then the above inequality holds. This proves
our claim. Moreover, we may require the subsolution f to satisfy

(12) f(t,)Y<b forte[0, T).

In fact, since 0 < ¢ < @, (12) holds provided that we choose the 8§ small
sothat (1) <b—m.
Now we assume that for some 7 > 0 the solution 2 of (3) satisfies

(13) h(i,r)> f(0,r) forrel0, 1]
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In view of (4), (12), f(¢,0) = 0 and (13), f is a subsolution for the
solution A(z, r) = h(f+1¢, r) of problem (3). If T, > 7+ T, then by the
maximum principle:(cf. §2 of [1]) we have : :

h(T+t,r)> f(t,r) forre(0,1), te(0, 7).
Since A(f+¢, 0) = f(¢, 0) = 0, this implies
h(t+1t,0)> f(t:0) forte(0,1).

In view of (10), we see that A (¢, 0) cannot be bounded up to time 7+ 7.
It follows that we must have T, <i+T, i.e. & blows up in finite time. We
remark that if Ay(r) > f(0, r) (such initial values certainly exist), then
(13) holds with 7 =0, and we have proved the theorem in this case.

(i) Next, we assume that for some #, > 0

(14) h(ty,r)>0, relo,1].

We will show that if the maximal existence time T;, = oo, then there exist
f > t, and a subsolution f in the family of subsolutions constructed in
case (1) such that (13) holds. Thus by the result of case (i) we see that
T, = co cannot be true.

We first note that # must blow up at infinity in the sense that

hrzr—l»i};lp 1A, (2, ')”CO([Q 1 = °°-

For otherwise, there will be a sequence f, — oo such that u(t, , ) con-
verges to a harmonic map as k — oo (cf. [1]). It follows that A(z,, -)
converges to a solution ¢ of (5) satisfying

(15) _ $(0)=0,  #(1)=0b.

As we have noted, all such solutions are given by ¢ = ¢(-, 1) in (6). It'is
clear that ¢(1, A) < @ forany 4 > 0. Hence the boundary condition (15)
cannot be satisfied. This shows that 2 must blow up. Then we deduce
from Lemma 3.4 in [1] that for some sequences ¢, — oo and 4, — 0

(16) h(t,, Ar) = B(r) in CX([0, RD)
for any R >0, where B(r) = =¢(r, 1). But (14) implies that
(17) h(t,r)>0 fort>tyandre (0, 1]

by the maximum principle (see Lemma 2.3 in [1]). So we have B(r) =
¢(r, 1). Since ¢,0, 1) = 2, it follows from (16) that we can choose
f =1, for some large k so that > ¢, and

(18) h(f,0)> 1.
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It is not hard to see from (17), (18) and the construction of our subso-
lutions that we may choose the parameters A, and u so large that the
subsolution f satisfies (13). As noted above, this implies the solution 4
blows up in finite time.

(iii) Finally we show that if 7, = oo, then we can find some 7, > 0
such that (14) holds. In view of the result of case (ii), this will 1mply that
the solution /# blows up in finite time.

First, we choose a subsolution

filt, r)=¢(r, A,(D) +6,(r)

with blow-up time 77 in the subsolution family constructed in (i). Let n
be a positive integer such that

hy(r) > f,(0, r) —nr forr €0, 1].

Then one checks easily that F, (¢, r) = f(¢, r)—nn satisfies the differential
inequality (4). Moreover, it satisfies :

F,(0,r) < hy(r), F(t,0)=—nn<0,F(t,1)<b-nn<b.
By the maximum principle, we have
h(t,r) > Fy(t, 1) = $(ra (D) + 8,(r) —nz,  ref0,1], te[0, T).
Since ¢(r, A,(¢)) »n as ¢t —» T, for r>0,
(19) T ,r)26,()~(n-lr, ref0, 1]

If n =1, then (19) implies (14) with f = 7|, and the proof has been
finished. If n > 1 we see that since 2(7,,0) =0> —(n—1)z, (19) yields

h(Ty,r)>—(n—1)r forre[0, 1].
By the continuity of A(7, ) there exists a, > 0 such that
WT,,r)>a,—(n—Lr forre[0,1].

Thus we may choose a subsolution fz(l , ) with sufficiently large param-
eters A, and u such that

£0,r)<a, forrel0,1].

Let T, be the blow-up time of f,. Then one checks that F,(f,r) =
5(t, r) = (n—1)x is a subsolution to the equation in (3) with

F,(0,n<h(T,,r), F(t,0)=—(n—-1r<0, Fy(,1)<b,
and proves as above that
T, +T—2,r)28,(r)— (n-2)m, re[0, 1].
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If n =2 we are done. If n > 2 we continue this procedure until (14)
is satisfied for some =17, +--- + T, . This completes our proof of the
theorem.

Finally we would like to remark on how to construct similar examples
for the case of S° — S>. We first note that if Si is the upper closed

hemisphere of S”, then Si is isometric to (D2 , p(lxl)dsz) , where ds®
denotes the Euclidean metric of R> and
4

p(lx[) = m

Thus, when we consider the heat equation of harmonic maps from Si
into S$* , we may choose coordinates on Si so that the equation becomes

o — o)™ @+ V),
(20) u(0, x) = uy(x),

u(t, )| 8D = uy| 8D
Similarly, when u, takes the form (2), the problem is reduced to

% - p(r)—l (hrr + %hr _ sinhrg:osh)
(21) RO, r) = ho(r),

h(t,0)=0, hA(t, 1)=0b.
Since 1 < p(r) € 4 for r € [0, 1], the proof of the theorem can be applied
to show that if |5 > 7 then the solution ~ of (21) must blow up in finite
time. This also gives examples of finite-time blow-up for (20). Now, if
(i) b=km or (ii) b= (k- (1/2))r for k=2,3, ..., then the map u,
considered as a map from Si satisfies (i) uo(aSi) = the north pole or
the south pole, or (ii) u,] asi = id | asi , respectively. In these cases u,
can be extended to a map from S? as follows. Let R,, R,: Ss? - 8% be
defined by

Rl('xl » X2 ’ x3) = (xl » X2 » —X3) » R2(X1 » X2 s x3) = (—xl » —Xo, —'X3).

Then the definition of u, can be extended to the lower hemisphere by
requiring

Upo R, = R,ou, in case (i),
and

Uyo R, = R ou, in case (ii).
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The resulting map denoted by #, will be in C 1(S2 , S2) , and ‘has degree
2k in case (i), degree 2k — 1 in case (ii). Similarly, for the solution
u(t, x) of (20) with initial value w,, we can extend its domain of space
variables to the whole S” in the same way. Denote the resulting mapping
by it. Then, noting that R, , R, are isometries of s? , one checks in a
standard way that i is a solution of the heat equation for harmonic maps
from S° into S* with initial value it,. Since the solution u of (20)
blows up in finite time and (¢, x) coincides with u(¢, x) for x € Si by
construction, we see that # blows up in finite time. This completes our
sketch for the examples of finite-time blow-up in the case of S? - 8.
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